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LETTER TO THE EDITOR 

Long-range distortions induced by a hole in an 
antiferromagnet 

M J Godfreyi and J M F Gunnt t  
t Department of Physics, University of Warwick, Coventry CV4 7AL, UK 
$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 OQX, UK 

Received 1 June 1989 

Abstract. We examine the long-range distortion induced by a hole in an antiferromagnet, 
first found by Shraiman and Siggia. We introduce a novel set of variables to treat the long- 
wavelength properties of an antiferromagnet. It is shown that if a static hole causes a short 
range ferromagnetic distortion, then the dynamical distortion follows immediately from the 
equations of motion of the spin system. Moreover we show explicitly that a weakly coupled 
particle induces such an effect perturbatively. 

Interest in the motion of holes in antiferromagnets, inspired by the discovery of high-T, 
cuprate superconductors, has focused on two aspects of the effect on the spin arrange- 
ment due to a single hole. First there is the effect of a hole on a set of uncoupled spins, 
considered by Nagaoka (1966). The result of such a calculation is believed to depend on 
the type of lattice involved: for the square lattice one finds ferromagnetism; but for a 
frustrated (e.g., triangular) lattice the answer is not clear. Secondly, there is the effect 
of the (super-) exchange coupling of the spins. The addition of the exchange coupling 
makes the problem intractable, so that one is forced to approximate. 

As soon as the exchange coupling is added, the hole cannot determine the entire spin 
arrangement, but merely determines it in some more or less localised region. Physically 
this results in the formation of some kind of ‘polaron’, with the interior of the polaron 
being the region of disruption of the Nee1 state. This area has been discussed before in 
the context of ordinary Mott insulators and rare earth materials (for a review see Nagaev 
1974). A new feature that has emerged in recent work by Shraiman and Siggia (1988) is 
the existence of a long-range dynamicafly-induced distortion. Thus the polaron develops 
two types of distortion: a short-range part which is determined by a local coupling of the 
hole to the spin system, perhaps of a Nagaoka form, and which remains in the stationary 
limit; and secondly the dynamical long-range part. 

In this Letter we show, without recourse to explicit discussion of the hole motion, 
that if the hole develops a ferromagnetically magnetised (not necessarily saturated) 
region statically, then an immediate consequence of the hole’s motion is the long range 
distortion found by Shraiman and Siggia (1988). All that is needed are the classical 
equations of motion of the spin system. Moreover we show that the same phenomenon 
occurs in a model with a weak local coupling of the hole to the spins (the Hubbard model 
implicit in the work of Shraiman and Siggia is strong coupling). We also introduce some 
novelvariables to facilitate the ‘long-wavelength’ discussion of an antiferromagnet which 
have some advantages over previous methods. 
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There is no exact treatment of the form of the spin distortion around a stationary 
ferromagnetic spin polaron (for a review see Nagaev 1974). Here we will make some 
qualitative comments on the orientation of the magnetisation associated with the short 
range part of the distortion and the absence of a long range part for the stationary case. 

Initially, let us assume that the hole causes a net magnetisation in a finite region of 
the lattice. The orientation of this magnetisation, if it is not saturated, may be deduced 
from the susceptibility of an antiferromagnet in the limit of zero temperature. Classically, 
in that limit, the longitudinal susceptibility (i.e. in the direction of the sublattice mag- 
netisation) is zero while the transverse susceptibility is non-zero. Thus regarding the 
effect of the hole as resembling an external field (which induces the magnetisation), we 
deduce that the induced magnetisation will be perpendicular to the sublattice mag- 
netisation. If the magnetisation is saturated then the issue is more subtle and will involve 
the effects of the boundaries of the region; henceforth we shall assume that we are 
dealing with the former case, 

To deduce the form of any static long range distortion induced outside the magnetised 
region, we regard the magnetisation as a weak transverse field applied to the rest of the 
antiferromagnet. Consider first the effect of a small transverse field applied to only one 
site. It is easy to see that the Euler-Lagrange equation for the large distance part of the 
distortion is Poisson’s equation, with the transverse field acting as a source, the sign of 
which dipends on which sublattice the field is applied to. The azimuthally symmetric 
solutions in two dimensions are proportional to In r or a constant. Happily, these radial 
dependencies are not present in the case of interest, since the transverse field is applied 
to a finite region. The effect of the transverse field on the two sublattices is opposite in 
sign, so we may guess that one sees a multipolar superposition of many of the above 
solutions. This is consistent with the solution of a problem in which a transverse field is 
applied to the spins at the edge of a semi-infinite plane of antiferromagnetically-coupled 
Heisenberg spins: apart from the single Fourier component of the field that causes 
rotation of the spins across the entire plane, one finds that the induced distortion dies 
away exponentially with distance from the surface. Hence we expect the distortion 
around a region of radius p (in units of the lattice parameter) to decay as r - p ,  if we can 
regard the surface of the region as a multipole of order p.  We will assume that we are 
dealing with spin polarons with an extent much larger than the lattice parameter so that 
we may discard the above distortion. 

Finally we come to the possibility of a dynamic distortion, in particular its long range 
part. (One expects any dynamical modification of the short range part to be model- 
dependent.) Since we are interested in long wavelength effects it is more convenient to 
use a continuum approximation for the antiferromagnet. The natural variable to focus 
upon is the direction of the local sublattice magnetisation as it is that which varies slowly, 
rather than the spin directions themselves. Moreover, if a formulation is desired which 
is well-defined even for disordered ground states, then one cannot define the sublattice 
magnetisation in a way that distinguishes between the ‘A’ and ‘B’ sublattices. 

One definition which does make such a distinction is the ‘brick’ definition used by 
Affleck (1985) for the one-dimensional spin chain. Here the sublattice magnetisation, 
S2k51,2, is defined on alternate links as the difference of the spin vectors on the neigh- 
bouring sites n and n + 1: 

fe+1/2 = P n + l  - (1) 
The difficulty with such a definition is that it requires an arbitrary choice of magnetic 
unit cell. In one dimension this amounts to a decision to pair a gived site with the 
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neighbour on its left rather than than on its right. In higher dimensions it leads to less 
palatable choices that break rotational symmetries. 

We would like to deal in a fully symmetrical way with quantum mechanical analogues 
of staggered magnetisation Ob* and net magnetisation, Mbr, defined by changing the sign 
in (1). The difficulties arise from combining dynamical varibles from different sites, and 
can be circumvented by introducing two vectors, w and p ,  on each site. We will 
later interpret the redundant variables of this description in terms of the sublattice 
magnetisation, Obr, and the net magnetisation, Mbr. The redundancy of having an extra 
vector on each site allows us considerable freedom in determining the commutation 
relations and equations of motion of w and p.  In making our choices of these quantities 
we will be guided by the bricking procedure and simplicity. 

We make the initial stipulation that the physical spins, S ,  are related to w and p by 

S = p k W  (2) 
where the upper (lower) sign refers, arbitrarily, to the A (B) sublattice. This is the same 
as the relation between S ,  and (nbr and Mbr. To aid the interpretation of p and w as the 
magnetisation and sublattice magnetisation, we further require them to satisfy the same 
relation p * w = 0 as the brick variables, and to have also the same commutation 
relations 

[pry pi1 = hiei ,kpk [mi , @,I = i i & , k p k  [ p i ,  w,] = hi&i,kwk* (3) 
To within factors of 2, these are the commutation relations of the generators of the 
rotation group in four dimensions, which are met also in Pauli's treatment of the 
hydrogen atom (Landau and Lifshitz 1977) where I ,  the orbital angular momentum, and 
U, related to the Runge-Lenz vector, correspond respectively to our p and w .  

We have given w and p the commutation relations of a sum and difference of angular 
momenta, and only the combination p + w has so far been accounted for. It follows 
that the other combination 

L = p + w  (4) 
corresponds to a 'phantom' spin, L ,  obeying standard angular momentum commutation 
relations. This is the redundancy introduced when the spin system is described by the 
variables p and w .  

To see the relation of p and o to the variables Mbr and Obr, choose SI and S o  to be 
neighbours on the A and B sublattice, respectively. Since the brick variables are defined 
on links, we make the comparison at the midpoint of the link, imagining for this purpose 
that p and w are smooth, classical functions of position. Then we have 

Or = h(Sl - So) " 1 ;  M F  = h ( S ,  + So) p+  k 4~ d ~ / d x .  ( 5 )  
The upper and lower signs refer here to the two possible choices of brick in one 
dimension: the correspondence between Mbr and p is therefore defined only to within 
the lattice derivative of w .  In ( 5 )  we have neglected d p / d x  and d2w/dx2 compared with 
p and aw/ax, This can be shown explicitly to be valid for a long-wavelength spin wave, 
or for a superposition of spin waves, and this will be sufficiently general for our purposes. 

So we see that our new variables may be chosen to correspond to the sublattice 
magnetisation and the slowly varying net magnetisation for a state which deviates only 
slightly from the classical Nee1 state. Unlike these latter quantities, however, w and p 
are defined even in a disordered spin state, so that there is no artificial discontinuity in 
the description in passing from an ordered to a disordered state. 
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To determine the Hamiltonian, we note that the phantom spins cannot be coupled 
to the real spins, as the dynamics of the latter must not be altered. Thus we may 
only couple the phantom spins among themselves. The choice that yields the simplest 
Hamiltonian (in terms of w and p )  is that the coupling of the L, parallels that of S, 

H = J 2 (S, - S,, + L, * L,,)  = 2 J  (p,  * pn, - W ,  * U,,,) (6) 
( n . n ' )  ( n . n ' )  

If, for instance, we had not coupled the Ls at all (an apparently simpler choice), then we 
would have obtained terms in o p .  

The commutation relations (3) and the Hamiltonian (6) expresed in terms of p and 
w give the following equations of motion 

(7) 
/ - i n =  J X  (U, X O n ' -  Pn X Pn,) 

n' 

and these equations of motion, being respectively odd and even in w,, take the same 
form on the two different sublattices, a virtue of this formulation. 

Equations (6) and (7) facilitate the derivation of the non-linear sigma Lagrangian 
for the long-wavelength properties of the Heisenberg antiferromagnet. The fields w 
and p are written in a gradient expansion and inserted into expression (6) for the 
Hamiltonian. We have 

2 (p,  . p,, - U, + U,,) = const. + [8p2 + a2(Vw)*]  (8) 
( n . n ' )  

From the equation for h and the condition p - w = 0 we find 

p = w x h / 8 J S 2  (9) 
so that the p2 term in the long-wavelength expansion of the Hamiltonian is a kinetic 
energy. In that limit the equations of motion are obtainable from a Lagrangian 

2 = 4 d 2 x  (h2 - (VU)*)  (10) J 
together with a constraint w 2  = 1. (This constraint is conserved only in the continuum 
limit of the equations of motion.) To simplify (10) and the su_bsequent formulae we have 
set 2 f U S  = a = 1 and redefined our variables by p + 2 d 2 p / S  and w + w/S,  making 
o a unit vector. 

A form for the coupling between the polaron and the spin system can be deduced 
from our earlier, qualitative considerations in which we argued that the spins near the 
hole show a tendency toward ferromagnetic alignment. We do not enquire closely into 
the internal structure of this region, but note simply that the canted spins at its boundary 
are coupled directly to the remainder of the antiferromagnet. The spins of the 'external' 
region therefore move in response to a certain distribution of magnetic moment, pSrCe, 
which will appear as a source on the right-hand side of (7) for h. Therefore we write the 
long-wavelength expansions of (7) in the form 

/-i = w x v 2 w  h = ( p  + p s r c e )  x U .  (11) 
We have observed already that, because of the vanishing of the parallel component 

of the magnetic susceptibility of the antiferromagnet, a distribution of magnetisation, 



Letter to the Editor 5825 

p ,  will lie perpendicular to the sublattice magnetisation o. We therefore seek solutions 
of (11) in which p lies in some fixed direction and o lies in the plane perpendicular to 
it. With the substitutions p = mi and CO, + io, = exp(irp) we obtain, after eliminating 
m, an equation of motion for q 

(12) q - ~2~ = & m e  

For the calculation of the spin distortion at large distances from the spin polaron we may 
replace msrce by a delta function AS2(x - vt) where the strength A may be expected in 
general to depend on the velocity, v. The appearance of the d’Alembertian operator on 
the left-hand side of (12) allows us to pass to the frame of rest of the spin pattern by 
means of a Lorentz transformation in which the spin-wave speed (here equal to unity) 
plays the part of the speed of light 

x’ = y(x  - ut) Y l = Y  y = (1 - “ 2 ) 4 2  (13) 

-(Vf)2Cp = -Ayu a[S(xl/y)S(y’>]/axI (14) 

so that the shape of the spin distortion is given by 

(Note that for U > 1 the equation we obtain in place of (14) is hyperbolic (the y-factors 
become imaginary) and there is no solution tending smoothly to zero at infinity. This 
corresponds to the emission of spin waves by the moving polaron.) For U < 1 we have 
(noting the dipolar form of the right hand side of (14)), in the stationary frame, the 
following solution 

q ( x ,  t )  = (A/2Jd) uy3(x - ut)/[y2(x - Ut)2 + y 2 ] .  (15) 
The last result (15) shows that the moving polaron carries with it a long-range 

dipolar distortion of the sublattice magnetisation. Despite the Lorentz invariance of the 
equations of motion of the free spin system, the form of the coupling to the hole is 
not Lorentz-invariant, so that the spin pattern does not simply Lorentz contract with 
increasing speed. In particular, the distortion vanishes with U ,  in keeping with its 
dynamical origin. 

The result for the angular deviation q has a parallel in the result of a simpler, 
perturbative, calculation in which the approximations made are more easily understood. 
We consider an S+ x Heisenberg antiferromagnet with weak exchange coupling to an 
electron near the bottom of a band. The interaction Hamiltonian is 

The unperturbed spin state is the spin-wave ground state corresponding to Nee1 align- 
ment along the z axis. The effect of the Szuz coupling is to open up a small gap for 
the electron states at the boundary of the magnetic Brillouin zone, and is of little 
interest here. On the other hand, the perpendicular coupling mixes the state l k l ; )  with 
Ik - q .1 ; q) and Ik - q 1 ; q + n(i + g)), which are degenerate spin-flipped states with 
one antiferromagnon of wavevector q or q + n(3 + j ) .  In the perturbed state, the spin 
motioniscorrelated with thatoftheelectron, and the expectationvalue ( U ;  S;)measures 
the correlation between the azimuthal angle of the electron spin on site 0 and that of the 
spin on site r .  

To understand more full the nature of this correlation function we write (for any 

is an (almost) unitary operator specified by its commutation relation with 
n: [exp(iqs), n] = exp(icps). The physical interpretation of Q, is that it is the azimuthal 

spin) S +-4 - (2s - n)  (n  + 1) exp(icps) where n is the operator (S - Sz) and exp(iqs) 
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angle of the spin. (This is avariation on Villain's representation of spin operators (Villain 
1974).) For the states of interest, which are su erpositions of 0- and l-magnon states, 

define the average azimuthal angle between the spins. For the correlation function we 
find 

the expectation value (aJS;) reduces to 2 ue 2 s  (exp i(q,, - Q , ~ ) ) ,  which we take to 

e19.r(e2ui t I )  = jSa2  i d 2 q  elq"(e2'q k 1) 
(17) 

is ( a i s ; )  = 2 - 2 N 2  ~ ( k )  - ~ ( k  - 4) - N ( 2 ~ ) ~  U - qc + O(q2)  

where the upper (lower) signs refer to the 1 ( t ) sublattices of the classical Nee1 state. 
The overall factor of two arises from the two species of AF magnons, and the term 
exp(2uJ comes from a Bogoliubov factor, and vanishes as q for small q. In the energy 
denominator a ~ ( k ) / d k  has been replaced by U ,  the electron velocity, and the remaining 
recoil terms, of order q 2 ,  may be neglected in the limit r--)  x .  The integral can now be 
completed analytically, giving 

Q, = sin Q, = I ~ [ ( ~ ~ s ; ) / ~ V ~ ~ ( C ~ C , , ) I  

where x, y are the relative coordinates of electron and spin and y is the factor defined in 
(13). In its velocity- and space-dependence this expression is identical to the one found 
for the spin distortion far from a spin polaron. We should bear in mind, however, that 
there is a limit to the comparability, since the axis of quantisation of the electron spin 
does not correspond to the direction of the magnetic moment in the spin polaron 
problem, which was fixed perpendicular to the unperturbed direction of the sublattice 
magnetisation. 

To conclude, we have introduced a new mode of description of an antiferromagnet 
at long wavelengths which allows a simple derivation of the non-linear sigma model. We 
have applied such a formulation to show, using only the classical equations of motion, 
that a dynamical long-range distortion can be expected if the coupling between a hole 
and the antiferromagnet yields a tendency toward spin polarisation. We have shown 
explicitly how this occurs in a weak coupling, quantum-mechanical model. 

( i / ~ ~ / S > ( ~ / c > [ y ~ a x / ( y ~ x *  + y 2 ) ]  + O(l/r2) 
(18) 
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